Linux Network Configuration and Troubleshooting Commands

Setup DNS Resolution With “resolv.conf” in Examples

The /etc/resolv.conf configuration file contains information that allows a computer to convert alpha-numeric domain names into the numeric IP addresses.

The process of converting domain names to IP addresses is called resolving.

When using DHCP, dhclient usually rewrites resolv.conf with information received from the DHCP server.

How do I edit the “/etc/resolv.conf” file?

Use text editor such as vi or gedit from Linux desktop :
# vi /etc/resolv.conf

There are three main configuration directives in /etc/resolv.conf :

nameserver # DNS server IP
domain # Domain Name of local host
search # Which Domain to search

The “nameserver” directive

The nameserver directive points out to the IP address of a Name Server.

nameserver <IP address>

It can be your own Name Server, some public Name Server or the Name Server of your’s ISP.

Note : Up to 3 name servers may be listed.

Example :

nameserver 192.168.0.100
nameserver 8.8.8.8
nameserver 8.8.4.4

The “domain” directive

Local domain name.

domain <local domain name>

Example :

domain domain.com
nameserver 192.168.0.100
nameserver 8.8.4.4

How the “domain” directive in the “resolv.conf” file works?

You can use domain directive for resolving short host-names – e.g. test.
So if you have the following in your /etc/resolv.conf :

domain example.com

Then your computer will try to resolve test.example.com.

The “search” directive

Search list for hostname lookup. The search list is normally determined from the local domain name but it can be set to a list of domains.

search <search list>

Example :

search example.com company.net
nameserver 192.168.0.100
nameserver 8.8.8.8

How the “search” directive in the “resolv.conf” file works?

You need to use search directive for resolving short host-names – e.g. test.
So if you have the following in your /etc/resolv.conf :

search example.com company.net

Then your computer will try to resolve test.example.com followed bytest.company.net. It will return the first query that was successful.

1. ifconfig

ifconfig (interface configurator) command is use to initialize an interface, assign IP Address to interface andenable or disable interface on demand. With this command you can view IP Address and Hardware / MAC address assign to interface and also MTU (Maximum transmission unit) size.

# ifconfig

eth0      Link encap:Ethernet  HWaddr 00:0C:29:28:FD:4C
          inet addr:192.168.50.2  Bcast:192.168.50.255  Mask:255.255.255.0
          inet6 addr: fe80::20c:29ff:fe28:fd4c/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:6093 errors:0 dropped:0 overruns:0 frame:0
          TX packets:4824 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:6125302 (5.8 MiB)  TX bytes:536966 (524.3 KiB)
          Interrupt:18 Base address:0x2000

lo        Link encap:Local Loopback
          inet addr:127.0.0.1  Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
          UP LOOPBACK RUNNING  MTU:16436  Metric:1
          RX packets:8 errors:0 dropped:0 overruns:0 frame:0
          TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:480 (480.0 b)  TX bytes:480 (480.0 b)

ifconfig with interface (eth0) command only shows specific interface details like IP Address, MAC Address etc. with -a options will display all available interface details if it is disable also.

# ifconfig eth0

eth0      Link encap:Ethernet  HWaddr 00:0C:29:28:FD:4C
          inet addr:192.168.50.2  Bcast:192.168.50.255  Mask:255.255.255.0
          inet6 addr: fe80::20c:29ff:fe28:fd4c/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:6119 errors:0 dropped:0 overruns:0 frame:0
          TX packets:4841 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:6127464 (5.8 MiB)  TX bytes:539648 (527.0 KiB)
          Interrupt:18 Base address:0x2000

Assigning IP Address and Gateway

Assigning an IP Address and Gateway to interface on the fly. The setting will be removed in case of system reboot.

# ifconfig eth0 192.168.50.5 netmask 255.255.255.0

Enable or Disable Specific Interface

To enable or disable specific Interface, we use example command as follows.

Enable eth0
# ifup eth0
Disable eth0
# ifdown eth0

Setting MTU Size

By default MTU size is 1500. We can set required MTU size with below command. Replace XXXX with size.

# ifconfig eth0 mtu XXXX

Set Interface in Promiscuous mode

Network interface only received packets belongs to that particular NIC. If you put interface in promiscuousmode it will received all the packets. This is very useful to capture packets and analyze later. For this you may require superuser access.

# ifconfig eth0 - promisc

2. PING Command

PING (Packet INternet Groper) command is the best way to test connectivity between two nodes. Whether it isLocal Area Network (LAN) or Wide Area Network (WAN). Ping use ICMP (Internet Control Message Protocol) to communicate to other devices. You can ping host name of ip address using below command.

# ping 4.2.2.2

PING 4.2.2.2 (4.2.2.2) 56(84) bytes of data.
64 bytes from 4.2.2.2: icmp_seq=1 ttl=44 time=203 ms
64 bytes from 4.2.2.2: icmp_seq=2 ttl=44 time=201 ms
64 bytes from 4.2.2.2: icmp_seq=3 ttl=44 time=201 ms

OR

# ping www.tecmint.com

PING tecmint.com (50.116.66.136) 56(84) bytes of data.
64 bytes from 50.116.66.136: icmp_seq=1 ttl=47 time=284 ms
64 bytes from 50.116.66.136: icmp_seq=2 ttl=47 time=287 ms
64 bytes from 50.116.66.136: icmp_seq=3 ttl=47 time=285 ms

In Linux ping command keep executing until you interrupt. Ping with -c option exit after N number of request (success or error respond).

# ping -c 5 www.tecmint.com

PING tecmint.com (50.116.66.136) 56(84) bytes of data.
64 bytes from 50.116.66.136: icmp_seq=1 ttl=47 time=285 ms
64 bytes from 50.116.66.136: icmp_seq=2 ttl=47 time=285 ms
64 bytes from 50.116.66.136: icmp_seq=3 ttl=47 time=285 ms
64 bytes from 50.116.66.136: icmp_seq=4 ttl=47 time=285 ms
64 bytes from 50.116.66.136: icmp_seq=5 ttl=47 time=285 ms

--- tecmint.com ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4295ms
rtt min/avg/max/mdev = 285.062/285.324/285.406/0.599 ms

3. TRACEROUTE Command

traceroute is a network troubleshooting utility which shows number of hops taken to reach destination also determine packets traveling path. Below we are tracing route to global DNS server IP Address and able to reach destination also shows path of that packet is traveling.

# traceroute 4.2.2.2

traceroute to 4.2.2.2 (4.2.2.2), 30 hops max, 60 byte packets
 1  192.168.50.1 (192.168.50.1)  0.217 ms  0.624 ms  0.133 ms
 2  227.18.106.27.mysipl.com (27.106.18.227)  2.343 ms  1.910 ms  1.799 ms
 3  221-231-119-111.mysipl.com (111.119.231.221)  4.334 ms  4.001 ms  5.619 ms
 4  10.0.0.5 (10.0.0.5)  5.386 ms  6.490 ms  6.224 ms
 5  gi0-0-0.dgw1.bom2.pacific.net.in (203.123.129.25)  7.798 ms  7.614 ms  7.378 ms
 6  115.113.165.49.static-mumbai.vsnl.net.in (115.113.165.49)  10.852 ms  5.389 ms  4.322 ms
 7  ix-0-100.tcore1.MLV-Mumbai.as6453.net (180.87.38.5)  5.836 ms  5.590 ms  5.503 ms
 8  if-9-5.tcore1.WYN-Marseille.as6453.net (80.231.217.17)  216.909 ms  198.864 ms  201.737 ms
 9  if-2-2.tcore2.WYN-Marseille.as6453.net (80.231.217.2)  203.305 ms  203.141 ms  202.888 ms
10  if-5-2.tcore1.WV6-Madrid.as6453.net (80.231.200.6)  200.552 ms  202.463 ms  202.222 ms
11  if-8-2.tcore2.SV8-Highbridge.as6453.net (80.231.91.26)  205.446 ms  215.885 ms  202.867 ms
12  if-2-2.tcore1.SV8-Highbridge.as6453.net (80.231.139.2)  202.675 ms  201.540 ms  203.972 ms
13  if-6-2.tcore1.NJY-Newark.as6453.net (80.231.138.18)  203.732 ms  203.496 ms  202.951 ms
14  if-2-2.tcore2.NJY-Newark.as6453.net (66.198.70.2)  203.858 ms  203.373 ms  203.208 ms
15  66.198.111.26 (66.198.111.26)  201.093 ms 63.243.128.25 (63.243.128.25)  206.597 ms 66.198.111.26 (66.198.111.26)  204.178 ms
16  ae9.edge1.NewYork.Level3.net (4.68.62.185)  205.960 ms  205.740 ms  205.487 ms
17  vlan51.ebr1.NewYork2.Level3.net (4.69.138.222)  203.867 ms vlan52.ebr2.NewYork2.Level3.net (4.69.138.254)  202.850 ms vlan51.ebr1.NewYork2.Level3.net (4.69.138.222)  202.351 ms
18  ae-6-6.ebr2.NewYork1.Level3.net (4.69.141.21)  201.771 ms  201.185 ms  201.120 ms
19  ae-81-81.csw3.NewYork1.Level3.net (4.69.134.74)  202.407 ms  201.479 ms ae-92-92.csw4.NewYork1.Level3.net (4.69.148.46)  208.145 ms
20  ae-2-70.edge2.NewYork1.Level3.net (4.69.155.80)  200.572 ms ae-4-90.edge2.NewYork1.Level3.net (4.69.155.208)  200.402 ms ae-1-60.edge2.NewYork1.Level3.net (4.69.155.16)  203.573 ms
21  b.resolvers.Level3.net (4.2.2.2)  199.725 ms  199.190 ms  202.488 ms

4. NETSTAT Command

Netstat (Network Statistic) command display connection info, routing table information etc. To displays routing table information use option as -r.

# netstat -r

Kernel IP routing table
Destination     Gateway         Genmask         Flags   MSS Window  irtt Iface
192.168.50.0    *               255.255.255.0   U         0 0          0 eth0
link-local      *               255.255.0.0     U         0 0          0 eth0
default         192.168.50.1    0.0.0.0         UG        0 0          0 eth0

For more examples of Netstat Command, please read our earlier article on 20 Netstat Command Examples in Linux.

5. DIG Command

Dig (domain information groper) query DNS related information like A Record, CNAME, MX Record etc. This command mainly use to troubleshoot DNS related query.

# dig www.tecmint.com; <<>> DiG 9.8.2rc1-RedHat-9.8.2-0.10.rc1.el6 <<>> www.tecmint.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<

For more examples of Dig Command, please read the article on 10 Linux Dig Commands to Query DNS.

6. NSLOOKUP Command

nslookup command also use to find out DNS related query. The following examples shows A Record (IP Address) of tecmint.com.

# nslookup www.tecmint.com
Server:         4.2.2.2
Address:        4.2.2.2#53

Non-authoritative answer:
www.tecmint.com canonical name = tecmint.com.
Name:   tecmint.com
Address: 50.116.66.136

For more NSLOOKUP Command, read the article on 8 Linux Nslookup Command Examples.

7. ROUTE Command

route command also shows and manipulate ip routing table. To see default routing table in Linux, type the following command.

# route

Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
192.168.50.0    *               255.255.255.0   U     0      0        0 eth0
link-local      *               255.255.0.0     U     1002   0        0 eth0
default         192.168.50.1    0.0.0.0         UG    0      0        0 eth0

Adding, deleting routes and default Gateway with following commands.

Route Adding
# route add -net 10.10.10.0/24 gw 192.168.0.1
Route Deleting
# route del -net 10.10.10.0/24 gw 192.168.0.1
Adding default Gateway
# route add default gw 192.168.0.1

8. HOST Command

host command to find name to IP or IP to name in IPv4 or IPv6 and also query DNS records.

# host www.google.com

www.google.com has address 173.194.38.180
www.google.com has address 173.194.38.176
www.google.com has address 173.194.38.177
www.google.com has address 173.194.38.178
www.google.com has address 173.194.38.179
www.google.com has IPv6 address 2404:6800:4003:802::1014

Using -t option we can find out DNS Resource Records like CNAME, NS, MX, SOA etc.

# host -t CNAME www.redhat.com

www.redhat.com is an alias for wildcard.redhat.com.edgekey.net.

9. ARP Command

ARP (Address Resolution Protocol) is useful to view / add the contents of the kernel’s ARP tables. To see default table use the command as.

# arp -e

Address                  HWtype  HWaddress           Flags Mask            Iface
192.168.50.1             ether   00:50:56:c0:00:08   C                     eth0

10. ETHTOOL Command

ethtool is a replacement of mii-tool. It is to view, setting speed and duplex of your Network Interface Card(NIC). You can set duplex permanently in /etc/sysconfig/network-scripts/ifcfg-eth0 with ETHTOOL_OPTSvariable.

# ethtool eth0

Settings for eth0:
        Current message level: 0x00000007 (7)
        Link detected: yes

11. IWCONFIG Command

iwconfig command in Linux is use to configure a wireless network interface. You can see and set the basic Wi-Fi details like SSID channel and encryption. You can refer man page of iwconfig to know more.

# iwconfig [interface]

12. HOSTNAME Command

hostname is to identify in a network. Execute hostname command to see the hostname of your box. You can set hostname permanently in /etc/sysconfig/network. Need to reboot box once set a proper hostname.

# hostname 

tecmint.com

13. GUI tool system-config-network

Type system-config-network in command prompt to configure network setting and you will get nice Graphical User Interface (GUI) which may also use to configure IP Address, Gateway, DNS etc. as shown below image.

# system-config-network

Linux GUI Network Configuration

This article can be useful for day to day use of Linux Network administrator in Linux / Unix-like operating system.

Advertisements

Posted on June 15, 2015, in Linux (Ubuntu/CentOS). Bookmark the permalink. Leave a comment.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: